
COMPUTER SYSTEMS LABORATORY 

STANFORD UNIVERSITY • STANFORD, CA 94305-4055 

THE ANNA PACKAGE SPECIFICATION ANALYZER 

USER'S GUIDE 

Walter Mann 

Technical Note: CSL-TN-93-390 

(Program Analysis and Verification Group Report No. 60) 

January 1993 

19960729 095 
Approved' tor  p-zohc rsisa 

-■"I ft 

OTAIOT INSPECTED 3 BTic QüALS** i* 

This research has been supported by the Defense Advanced Research Projects Agency/Information Syst 
Technology Office under the Office of Naval Research Contract N00039-91-C-0162. 

:ms 



THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE 

COPY FURNISHED TO DTIC 

CONTAINED A SIGNIFICANT 

NUMBER OF PAGES WHICH DO 

NOT REPRODUCE LEGIBLY. 



The Anna Package Specification Analyzer 
User's Guide 

Walter Mann 

Technical Note: CSL-TN-93-390 
Program Analysis and Verification Group Report No. 60 

January 1993 

Computer Systems Laboratory 
Departments of Electrical Engineering and Computer Science 

Stanford University 
Stanford, California 94305-4055 

Abstract 

The Anna Package Specification Analyzer is a tool used in developing Ada package specifications an- 
notated with Anna language constructs. The tool constructs a symbolic representation of a package spec- 
ification, and models different states of that package. Using deductive reasoning on the model, it answers 
questions about those states, and, if the specification is complete enough, simulates by symbolic execu- 
tion how an implementation of the package which satisfies the specification would behave, even if no such 
implementation exists. 

In consequence, the user has greater confidence in the resulting specification; inconsistencies detected 
later by run-time checking tools are more likely due to errors in the implementation, rather than in the 
formal specification. 
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Chapter 1 

Introduction 

Anna [1, 2, 3] is a specification language for sequential Ada programs which allows users to specify formally 
the intended behavior of Ada software. In particular, the visible part of an Ada package may be formally 
specified by annotations on types and operations declared in it, and by axioms constraining the overall 
behavior of the package. Any implementation (body) provided for this package must satisfy its constraints. 

The Anna Package Specification Analyzer (referred to in this paper as the Analyzer for brevity) is a 
tool used in developing Ada package specifications annotated with Anna language constructs. The tool 
constructs a symbolic representation of a package specification, and models different states of that package. 
Using deductive reasoning on the model, it answers questions about those states, and, if the specification is 
complete enough, simulates by symbolic execution how an implementation of the package which satisfies the 
specification would behave, even if no such implementation exists. 

The tool provides an interactive environment which simulates how an actual computation would use the 
package. The user acts like a driver program, executing the package operations symbolically and examining 
the results. Inconsistencies may arise in the course of analysis: the package may not behave as the user 
intended, yielding for instance an unexpected result for a function call. The user may use the Analyzer to 
deduce which annotations implied the incorrect result, and hence why the specification is unacceptable. 

For example, consider the fragment of a file Input/Output package in Figure 1.1. The user has specified 
subprograms and in-state and out-state conditions for them. At some point, the user may wonder whether 
the following case is constrained as expected by the specification: two files (where a file is some abstract 
type) are opened, both to the same external file, and one is deleted—what is the status of the other file? 

With the Analyzer the user may test this case by performing the operations and then examining the 
resulting state. The following short session models the desired state and tests the case. User input is shown 
in boldface, and Analyzer output in Roman. 

First the file containing the package of Figure 1.1 is loaded, and the Analyzer builds a model of the 
specification. This model is called the computation state in that it simulates an embedding of the package 
in an environment where the user can examine and change the state of the environment. Interactions with 
the package transform the computation state as new information arises. 

Then two variables of type File-Type are declared interactively from within the environment of the 
Analyzer. We use these variables to represent symbolic entities which we may manipulate in subprogram 

calls. 



package 10  is 
type  File_Type is  private; 
Status_Error   :  exception; 

function Is_0pen(  F  :  File_Type ) return Boolean; 

— |  axiom not Is_0pen(  File_Type'Initial ); 

procedure Open(  F  : in out  File_Type; 
Name : in String ); 

— |  where Is_0pen(F)  =>  raise Status_Error, 
— j out( Is_0pen(F)  ); 

procedure Delete(  F  :  File_Type ); 
--|  where not  Is_0pen(F)   =>  raise Status_Error, 
--| out(  not  Is_0pen(F)   ); 

end  10; 

Figure 1.1: Fragment of an Input/Output Package 

> p (Load package specifications) 
—> io.anna 

> o (Declare objects) 
—> Fl, F2 : File_Type; 
—> 

The user enters the operations which would be executed to reach the desired state: two Open operations, 
followed by the Delete operation. 

> x (Execute subprograms) 
—> Open( Fl, "myfile" ); 
--> Open( F2, "myfile" ); 
—> Delete( Fl ); 
—> 

Each call results in the symbolic execution of the given subprogram call. In this case symbolic execution 
consists of deducing that the in-conditions of the operations are satisfied in the current state, and then 
asserting the out-conditions. 

First the Analyzer tests whether the in-state conditions of the subprogram call are satisfied by knowledge 
in the current computation state. In both calls to Open here the package axiom 

--|  axiom not  Is_Open(   File_Type'Initial  ); 
means that every object of type File is initially closed, so the in-condition of the first Open call is satisfied. 

If the in-conditions are satisfied, the state of computation is updated such that the out-state conditions 



are TRUE in the new state. The execution of the first Open call makes the expression 
Is_Open(  Fl  ) , 

TRUE after execution of the call. If this expression had not been TRUE when the call to Delete was 
symbolically executed, the propagation annotation of subprogram Delete would have been violated, and the 
user would be notified that an exception would occur in this case. 

Once the state in question has been reached, the user asks what the value of function Is.Open would be 

if it were called with the undeleted file.   

> v (Value of expression) 
—> Is_Open(F2); 
—> 
TRUE 

From the formal specifications, the Analyzer has deduced that F2 would still be open in this state of 
computation, even when its external file has been deleted. If this was not the intended behavior of an 
implementation, the user may wish to refine the annotations to reflect the intended behavior. 

In consequence, the user has greater confidence in the resulting specification; inconsistencies detected 
later by run-time checking tools such as [4] are more likely due to errors in the implementation, rather than 
in the formal specification. „, 

This tool has been implemented on Unix variants using the Verdix Ada Development System (VADb) on 
Sun-3 and Sun-4 workstations and a Sequent Symmetry multiprocessor1. 

Chapter 2 gives an overview of the concepts of specification analysis. Chapter 3 discusses the concept 
of State, which is crucial to Specification Analysis; it also includes a walk-through introductory session for 
getting started with the tool. Chapter 4 lists all commands available, and how to use them. Chapter 5 
discusses the implicit knowledge and assumptions made by the Analyzer. A complete session of specification 

analysis is given in Appendix A. 

»Unix is a registered trademark of AT&T Bell Laboratories. Verdix and VADS are registered trademarks of VERDIX 
Corporation. Sun is a registered trademark of Sun Microsystems, Inc. Sequent and Sequent Symmetry are reg.stered trademarks 

of Sequent Computer Systems, Inc. 



Chapter 2 

Specification Analysis—Overview 

Specification analysis refers to tools and methods for analysis and debugging of formal specifications; formal 
specifications are considered as entities independent of implementations. That is, specification analysis may 
be used before an implementation of the specification has been written, so that errors and ambiguities are 
uncovered early in the software life-cycle. 

A specification analyzer is an interactive tool which creates an environment. The environment includes 
a computation state which undergoes incremental transitions. The state models the specification, variables 
declared interactively, and some predefined knowledge. The environment also supports several classes of 
commands; the two most important of these are manipulation and query commands. 

State manipulation operations allow the user to change the model by extending or restricting it, and 
thereby simulate how an implementation satisfying the constraints would function. For example, an Anna 
subprogram may be symbolically executed, meaning that the model is changed such that future responses 
will behave as though the actual subprogram (as implied by its formal description) were executed. 

State query operations let the user examine the knowledge implied by the state. For example, the user 
may ask whether a particular Anna expression holds TRUE in the current state. 

Figure 2.1 illustrates how a user interacts with the Analyzer using manipulation and query operations. 
At this point, a complete example might be helpful. Section 3.1 includes a session using the Analyzer 

which introduces the computation state, while Appendix A is a complete scenario of a specification debugging 
session. 

The original work in specification analysis for Anna was done by Neff [5], who describes an early tool, 
while [6] describes how the Ada/Anna constructs that comprise a specification are modeled in the tool. 



USER 

Symbolic 
Execution Queries       \ Answers 

Variables: 
Res1, Res2,... 

Visible part of 
Package Resource_Allocator 

Computation State 

Figure 2.1: User Interaction With the Analyzer 



Chapter 3 

Computation State 

The basic environment provided by the Analyzer is the computation state. This state can best be thought of 
as representing the knowledge given in the specification, both by specific Anna statements, and by all that 
they imply. Another way to think of the computation state is as a logic state—a set of boolean statements 
describing what is true of the specification. 

The state undergoes various transformations as analysis progresses. These transformations consist of 
adding new information to the original state; no information is thrown away, as new additions to the state 
may refer to values in the old state. For example, suppose a variable has a certain value in a computation 
state. We want to change the state so that the variable has a new value which is a function of the old value. 
This state transformation is modeled by adding information relating the variable's new value in terms of its 
old value. 

States are indexed by a natural number, initially zero (0). Each transformation increments this number. 
So the index number of a state indicates how many transformations have occurred since its initial state. 

A specification analysis session begins with the initial computation state, which consists of predefined 
knowledge of the Ada language (such as information about predefined types: integers, characters, etc.). 
Each package specification loaded causes a state transformation, which adds the knowledge acquired from 
the specification to the old state; the index number is incremented each time. 

Subsequent transformations are caused by other Analyzer commands, namely: symbolic execution of a 
subprogram, interactive declaration of objects, and explicit state updates. 

3.1     Getting Started 
The following Analyzer session introduces the computation state. This section assumes that the tool has 
been properly installed along with the rest of the Anna toolset, and has been invoked 1. 

At this point the user sits in the environment called the Computation State. Initially the Analyzer has no 
knowledge of any package specifications, but it does have predefined information found in package Standard, 
such as knowledge of types Integer, Boolean, Character, etc., as well as the predefined operations on these 
types. 

The following session fragment is intended purely to familiarize the user with the basic concepts of the 
computation state; it should not be considered a typical session. The characters after the "> " prompt are 
single character commands entered by the user, and the Anna code following the "—> " prompt is also 
entered by the user. Note that an empty line must follow Anna code to indicate the end of input. 

First we declare two variables. This causes a transformation of the computation state, such that the new 
information is added. That is, the computation state number changes from 0 to 1. Then we ask about the 
value of an expression involving the variables: 

1 See [7] for details in installing and invoking Anna tools on your system 



> o (Declare objects) 
Enter Code (<CR> to end): 
—> I, J : Integer := 3; 
—> B : Boolean := not False; 
—> 

> v (Value of expression) 
Enter Code (<CR> to end): 
—> I * J + Boolean'Pos(B); 
—> 
10 

Using the 'S' command we can cause another computation state transformation such that the variables 
have new values, and then test those values. 

> S (Update state) 
Enter Code (<CR> to end): 
—> I = in I + 1, 
—> J < 0; 
—> 

> v (Value of expression) 
Enter Code (<CR> to end): 
—> I, J, B; 
—> 
4 

Unable to deduce a value for this expression. 

TRUE 

The new value for I is 4 because in the state update we said its value in the new state was equal to its 
value in the old state (expressed in Anna as in I) plus 1. We cannot deduce a value for J because the state 
update did not contain enough information to prove a specific value, only that it is less than 0. Finally, 
since we did not mention B in the update, the Analyzer assumes its value does not change, and so it is still 

TRUE. 
We can also use the Display command to see an explicit representation of the computation state as a list 

of Anna expressions. It also displays the current computation state number. Note that the "current" value 
of variable I is represented as "i'2" and is shown in terms of the value of I in the previous state. Computation 
state 1 is the subset of computation state 2 consisting of its first three statements. 



> d (Display computation state) 
Current Computation State: 2 

i'l = 3 
j'l = 3 
b'l = TRUE 
i'2 = i'l + 1 
j'2 < 0 

3.2    Computation State vs. Package State 

Some confusion may arise over the relationship between the state of computation and the Anna definition 
of package state. In Ada, packages can simulate two different abstractions: data types and state machines. 
A single package can in fact use both abstractions, but for explanatory purposes we will discuss only those 
packages which are "pure" abstractions of either kind. 

An example of an abstract data type package is a mathematics package, such as the complex number 
package given in Figure 3.1; it defines a type Complex-Number and operations on it such as +, -, etc. A 
package such as this requires no internal memory; it simply defines routines, the resulting values of which 
are pure functions of their input. The state (set of internal data structures) of this kind of package does not 
change. We say that such a package requires only a trivial state. 

An example of an abstract state machine package is a resource allocator, the interface of which hats 
operations like Resource-Available, Allocate, and Deallocate; an example of such a package is given in 
Figure 3.2. Resource-Available may return TRUE initially, but FALSE if another unit has called Allocate; 
in a sense, the package must "remember" that Allocate has been called. Such a history-dependent package 
requires a state, internal memory (such as data constructs in its body), to respond as intended. 

In Anna all packages, whether or not they require a non-trivial state, are extended to be full types. A 
package type defines a domain, which consists of all possible states of the package (the state type of a trivial 
state package therefore has exactly one element in its domain). In Anna, a package state is denoted by the 
list of calls to subprograms of the package since its initial state which were required to reach the state. 

For instance, in the Resources package, we can describe the state achieved by starting in the current 
package state, executing Allocate, and then executing Deallocate, by the Anna expression: 

Resources'State[Allocate(Mag_Tape);  Deallocate(Mag_Tape)] 
Then we can express that any state of the allocator package is equal to the state achieved by executing 

Allocate and then Deallocate for the Mag-Tape resource, with the following axiom: 
— \  axiom 
--| Resources'State[Allocate(Mag_Tape);  Deallocate(Mag_Tape)]  = 
--| Resources'State; 

In the Complex-Number package, every list of subprogram calls describes the same state. The sequence 
of subprogram calls previously made to the package have no effect on the current subprogram call. 

Now, how is the package state related to the computation state created by the Analyzer? Conceptually, 
packages under analysis are declared "inside" the computation state, and so the current state of a package 
is a subset of the current state of computation. When a particular package state changes, for instance as a 
result of symbolic execution of one of its subprograms, the computation state is therefore transformed, since 
it is a superset of the package state. However, not every computation state transformation will change a 
package state; updating the value of a variable will change the computation state, but will not change any 
package states. 

In Figure 2.1, changing a variable such as Resl causes a computation state transformation, which incre- 
ments the computation state number, but which does not affect the state of the Resource-Allocator package. 



Executing a subprogram, say Allocate, in the Resource-Allocator transforms the state of that package, 
which also means that the computation state has transformed, so again the computation state number is 

incremented. 

package  Complex_Number_Package is 
type Complex_Number is private; 

function "+"(  Cl, C2  :  Complex_Number )  return Complex_Number; 
function "-"( Cl, C2  : Complex_Number ) return Complex_Number; 

end  Complex_Number_Package; 

Figure 3.1: Fragment of a Complex Number Package 

package  Resources  is 
type  Resource is  (   Printerl,  Printer2,  Mag_Tape  ); 

function Resource_Available(  R :   Resource  )  return  Boolean; 

procedure Allocate(  R  :  Resource  ); 

procedure  Deallocate(   R  :   Resource   ); 

end Resources; 

Figure 3.2: Fragment of a Resource Allocation Package 

3.3    Variables and Functions 
Variables may be declared interactively at any point during specification analysis, and are used to store values. 
Their values may change—the value of a variable may be different in different states of a computation. So 
we can say that a variable has a value with respect to a specific computation state. During analysis, the 
current value of a variable may change, but its value with respect to a specific computation state always 

remains the same. 
The value of a variable with respect to a computation state is expressed in the Display Computation 

State command by displaying the computation state associated with every variable instance. For example, 
"v'3" refers to the value of variable v in computation state 3. 

Variables may also be declared in a package specification. However, such variables are not considered to 
be part of the package state, since their values may be changed by threads of control outside the package 



boundary. By Ada rules, package variables are considered to exist in the scope declaring the package[8, §8.2]. 
In specification analysis, this outer level is the computation state environment itself, and package variables 
may be thought of as existing at the same "level" as interactively declared variables, and are treated the 
same way—they are subscripted by the computation state number. 

In Specification Analysis, functions are always associated with some package specification. Functions 
have a value with respect to the state of the package in which they were declared. This may correspond 
to several states of the computation, however a user may only refer to the value of a function in terms of 
package state, using the relative function call and successor state syntax of Anna[2, §7.7.3]. 

10 



Chapter 4 

Commands 

There are five classes of commands available: loading, manipulating, querying, logging/scripting, and other 
miscellaneous commands. In the default line-oriented interactive mode or the Analyzer, all commands are 
single characters, not requiring a carriage return; some require further input such as a file name, Anna 
expressions, etc. In this chapter we first describe the input required by the Analyzer, and then discuss the 
commands themselves. 

4.1    Kinds of Input 

The Analyzer takes three different kinds of input: commands, file names, and Anna code. Each is discussed 
below. 

Commands. In line-oriented mode, the command prompt "> " requires a single character response with 
no carriage return. In windowing mode, commands are listed in pull-down menus. The user is prompted for 
any further required input. 

File Names. Commands requiring a file as input give the prompt "—> ". The file name should be 
entered, followed by a carriage return. The full file name (with extensions such as ".anna") may or may not 
be required; see specific commands for details. 

Anna Code. Anna code is also prompted for by "—> ". All Anna code input requires a terminating 
semi-colon ';' to indicate the syntactic end of the expression. Further, the Analyzer requires that a blank 
line (with no spaces or tabs) be entered after the last line of Anna input, to indicate the end of input. 
Some commands accept multiple Anna expressions; these expressions should be separated by commas, and 
terminated by a semi-colon. 

For commands which require File Names or Anna Code, if no input is given the command is aborted 
with no change to the computation state. 

Occurrences of a variable in an Anna input expression refer to the value of the variable with respect to 
the current (numbered) computation state, except those which are modified by in; those occurrences refer 
to the value of the variable in the previous computation state. Function calls in an expression require the 
full package name prefix, for instance: 

Stack.Pop 
unless the package was the last one loaded (specifically, when analyzing a single file, the package name 
need not be given). In Ada semantic terms, the environment acts as though all packages under analysis are 
withed, and the last one loaded is also used, by the computation state. 

11 



A function call may be given relative to a specific package state, for instance: 
Stack'Initial.Pop 
Stack_Object[Push(0)] .Pop 

or without any reference to a state: 
Pop 

The last example refers to the value of the function in the current package state. 
Declarations and subprogram executions entered interactively which refer to elements declared in virtual 

text must follow the Anna semantics rule that they be virtual text themselves; start each such input line 
with the virtual text indicator "—:", following the prompt. 

4.2    Loading Commands 
Loading commands determine which specifications are being analyzed; specifications are loaded from external 
files. The standard sequence for loading a series of files is: start with the initialization command, followed by 
one or more package load commands. This sequence may be repeated later in the session to analyze another 
set of specifications. 

4.2.1 Initialize — ci' 

This command reinitializes the computation state to state 0, with no packages loaded and no interactive 
variables declared. If, after a session of analysis, the user wishes to analyze a different set of packages or to 
reload modified versions of the packages being analyzed, the 'i' command must be issued before the next set 
of loads. 

4.2.2 Load Packages — 'p' 

This command prompts the user for the name of a file containing one or more Anna package specifications, 
and loads the file packages into the Analyzer. If the file name ends with the extension ".anna" that extension 
may be omitted. 

If the file is successfully loaded, the current state of each package is its Initial state. Queries about the 
state of any package which are deducible purely from the object and type annotations, axioms, and function 
result annotations can then be made. 

Example: 

> p (Load package specifications) 
Enter File Name: 
--> mypkg.anna 

4.2.3    Reset to Initial States — V 

This takes no further input. It resets the computation state to its initial value plus the initial states of all 
packages given in the last set of loads. That is, it acts as though the computation state were reinitialized 
and any files given in the last set of 'p' commands were reloaded. 

The Reset command is useful if the user wants to start the session over again quickly, perhaps because 
he has made an unrecoverable input error in the last session. 

12 



4.3    Querying Commands 
This group of commands allows the user to examine and test the computation state. The Analyzer includes 
a theorem-prover which uses deduction on the computation state to derive its implications. 

4.3.1    Value Search — V 
The user is prompted for a list of Anna expressions. The type of each expression must be discrete: specifically, 
an integer, enumeration, or character type, subtype, or derived type. As a special case, string values are also 
supported, but indexing, slices, and catenation on strings are not supported. 

For each expression, the state is examined and a set of Ada literals is returned. 
If the state is consistent, this set consists of the literals in the equivalence class of the expression. It will 

always be either a singleton set or the empty set, due to the uniqueness property of Ada literals (that unique 

literals always have unique values). 
The value command is useful in finding the value of an observer function of a package without actually 

changing the state. The result returned is the value of the function if it were executed with the Execute 
Subprogram command. Note however that in-conditions of a function are not currently checked when using 
the Value Search command; these conditions are assumed to be satisfied. 

Expressions containing quantified subexpressions are evaluated using the Objects Define Domain method 

given in Appendix C. 
Example: 

> v (Value of expression) 
--> Cardinality(MyJSet); 
—> 

If the computation state is inconsistent and the Single Value Search option is set to FALSE (see Sec- 
tion 4.6.1), the set of literals produced by this command consists of the set union of the value of the expression 
in the consistent subsidies of the state. Recall that the state can be described as a set of boolean statements. 
A consistent substate is a subset of this set which is consistent. Sometimes a state is inconsistent because 
the value of an expression is implied to be equal to more than one literal; if so, all such literals are given. 
Hopefully, this will aid in debugging the inconsistency. 

Example: 

> v (Value of expression) 
--> Cardinality(MyJSet); 
—> 

If the Single Value Search option is TRUE, only the first literal found in the equivalence class of the 
expression is printed. 

4.3.2    Boolean Query — 'q' 

The user is prompted for a list of Anna boolean expressions. For each expression, TRUE, FALSE, UN- 
KNOWN, or INCONSISTENT is returned, indicating the truth value of the expression with respect to the 
computation state. 

13 



This command is a special version of the Value Search command for use with Boolean-typed expressions. 
There are two main differences between it and Value Search. 

Firstly, the Single Value Search option applies only to Value Search; Boolean Query will always search 
for all values of the expression. If the state implies that the expression is TRUE only or FALSE only, 
the command will return TRUE or FALSE, respectively. If neither value is implied, UNKNOWN will be 
returned. If both values are implied, INCONSISTENT will be returned. 

Secondly, the user has control over which method of evaluating Anna quantified expressions is used; in 
Value Search, the Objects Define Domain method is always used. Section 4.6.1 describes an option which 
changes the evaluation method, and Appendix C describes the methods. 

A TRUE or FALSE answer can be accepted confidently, but UNKNOWN can mean either that not 
enough information exists to prove or disprove the queried statement, or that the theorem prover was not 
intelligent enough to find a proof or disproof. 

For example, suppose we have declared two integer variables A and B, but their values are not known. 
The query: 

A  =  B; 
will return with UNKNOWN because we have not provided the Analyzer with enough information to deter- 
mine if this statement is TRUE or FALSE. 

However, suppose we made the query: 
A  +  B     =     B  +  A; 

In the current implementation of the Analyzer, this would also return UNKNOWN, even though it is TRUE 
for all values of A and B; the symmetry axiom x>f addition is not part of the implicit knowledge of the 
Analyzer (see Chapter 5 on Implicit Knowledge), and so the statement cannot be proved. 

Example: 

> q (Query state) 
—> Push(Il,Push(I2,S)) = Push(I2,Push(Il,S)), 
—> Length(Push(Il,S)) > 0; 
—> 

UNKNOWN 
TRUE 

4.3.3    State Consistency Test — 't' 

This command takes no further input. It checks whether the current computation state is consistent. If so, it 
simply returns. If not, an inconsistent subset (not necessarily minimal) of the Anna expressions comprising 
the state is printed out. This command can be invoked automatically each time the state is translated; see 
the Options command. 

Example: 

> t (Test state consistency) 
ERROR: State is inconsistent: 
for all T : T.Type => 0 < T; 
Tl = -5; 
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4.3.4    Display Computation State — 'd' 

This command displays a representation of the computation state (except the implicit knowledge discussed 
in Section 5)- axioms, function result annotations, and values of variables and function calls parameterized 
by specific computation states. The form of the display is a list of Anna expressions (with the exception 
of variables, as is described below). The expressions may not be exactly the same as the original text 
of annotations and state transformations, because all logical expressions are transformed into a canonical 
form called disjunctive normal form to aid theorem proving techniques. The current computation state 
(numerical) and each package's current state (list of subprograms executed since its initial state) are also 

shown. 
Example:   

> d (Display computation state) 
Current Computation State: 1 
Current Package State for stack: stack'lnitial[push(0)] 

stack'Initial.length = 0 
stack lnitial[push(0)] .length = 1 
stack'lnitial[push(0)j.top = 0 

4.4    State Manipulation Commands 
States can be manipulated in various ways, but all follow the same general principle. The computation state 
undergoes a transformation, such that the information comprising the transformation is made TRUE in the 
new state. The computation state number is incremented; state manipulation commands may also change 
package states—see specific commands for details. What happens to other information not referred to in the 
transformation is discussed in Section 5.2 on the Frame Axiom. 

4.4.1    Declare Objects — 'o' 
This command prompts the user for one or more declarations of objects (variables or constants) which are 
used to store values during analysis. Along with package variables, variables declared in this way reside 
outside all package states, and the frame axiom schema for variables applies to them. Initial values can be 
given to the objects, and they can be annotated with object constraints, which constrain their values in all 
states of the computation. All package states are unchanged after executing this command. 

Example:   

> o (Declare objects) 
—> Evenl : Integer; 
—> —| Evenl mod 2 = 0; 
—> First_Cb.ar, Lower.Case.A : constant Character := 'a' 
—> —: My_State_Obj : Stack'Type := StackTnitial; 

—> 

4.4.2    Update Computation State — 'S' 

This command allows the user to state explicitly a transformation of the computation state.   The user 
is prompted for a list of Anna expressions, separated by commas and terminated by a semi-colon.  This 
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causes a state transformation such that the expressions are TRUE in the new state. The package states are 
unchanged. 

Example: 

> S (Update state) 
—> X = 0, 
—> My_State_Obj = = Stack'State; 
—> 

This command is mainly intended to update manually the values of interactively declared variables. To 
change the value of some set of variables, simply execute the command with a set of equality updates such 
as in the example above. 

However, manual state updating may also be used to postulate how a package would react if new axioms 
were added to it. An axiom applies over all states of the package. This can be expressed by updating the 
computation state with an expression where all calls to a package subprogram are universally quantified over 
the state type of the package in which they were declared. 

For example, using the Resource Allocation package of Section 3.2, suppose we want to examine the 
results of adding an axiom specifying that any state of the package is equivalent to a state achieved after 
allocating and then deallocating a resource. In Anna, this could be expressed by the axiom: 

- -1   axiom 
--| for all R  :   Resource  => 
--| Resources'State  = 
--1 Resources'State[Allocate(R);Deallocate(R)]; 

To see how the package would respond if this axiom were added, we may load the original (axiom-less) 
package, and transform the state with the "simplified notation" form of the axiom (see [2, §7.8.1]), universally 
quantifying over the Resources state type: 

> S (Update state) 
—> for all ResourceJState : Resources'Type => 
-->    for all R : Resource => 
-->       ResourceJState = 
-->       Resource_State[Allocate(R);Deallocate(R)]; 
—> 

4.4.3    Execute Subprograms — 'x' 

The user is prompted for one or more subprogram calls. If the subprogram is a procedure, the call is given 
just as it would appear in Ada code: 

> x (Execute subprograms) 
—> Set_Output( OutputJFile ); 
—> 

If the subprogram is a function, it may be assigned to a variable, e.g. assuming we have declared a 
variable T: 

> x (Execute subprograms) 
—> T := Top(S); 
—> 
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in which case the function is executed as described below, and in addition to any transformations which 
occur because of out-state annotations, the expression 

T = Top(S) 
is TRUE in the new state. 

Alternatively, it can be given as simply the call:     

> x (Execute subprograms) 
—> Top(S); 
—> 

in which case the subprogram is executed as described below, and then the value, if any, the function 
would return is displayed. This kind of subprogram call is not supported if static semantic correctness of 
input is checked (see Section 4.6.1), since the input is not a semantically legal Ada statement. 

Symbolic execution of a subprogram occurs in three stages: checking of in-annotations, checking of 
exception annotations, and transformation of the computation state using out-annotations: 

1. Each in-annotation is queried. If any in-annotation is FALSE or INCONSISTENT, the user is notified 
and execution of the subprogram halts without a state change. If an in-state annotation is UNKNOWN, 
the user is prompted as to whether or not execution should be continued. 

2 The strong propagation annotations are queried. For all such annotations that are UNKNOWN, a 
warning message is printed out. For all such annotations that are TRUE, the exceptions that would 
be raised are sent to output (raising of more than one exception, while impossible in Ada, can occur 
in Anna Package Specification Analysis if two strong propagation annotations are both TRUE), and 
these exceptions form a set of raised exceptions. 

3. A state transformation occurs. If no exceptions have been raised, the transformation is the set of all 
out-state annotations. If one or more exceptions have been raised, the set of transformation statements 
is initially empty. Each weak propagation annotation is examined; if it has a specified exception m 
the set of raised exceptions, its condition is added to the transformation. In either case, the final 
transformation set may be empty. 
The call itself (subprogram name plus actual parameters) is appended to the list of previous subpro- 
grams executed, to represent the current package state. This completes subprogram execution. 

4.5    Logging and Scripting Commands 
A log file is a record of the input and output of part of a specification analysis session. Several log files 
may be open at one time; input and output is sent to all open log files. The most recently opened log file is 
always closed first—if the user opens log files LI, L2, and L3 in that order, they will be closed in the order 

L3, L2, LI. . 
A script file is in a format which may be interpreted by the Analyzer to perform a series of commands 

automatically, without any user-interaction until the end of the file is reached. An unaltered log file will 
always be a legal script file, or a script file may be user generated, as long as it is formatted correctly. 

The format must be such that it contains zero or more lines beginning (at column 1) with a command 
prompt ("> ", greater-than and a space) followed by a command character; characters past this column are 
ignored. If the command takes further input, a line or lines beginning with the input prompt ("—> ", 
two dashes, greater-than and a space) must appear, along with the required input, after the command and 
before the next command; for Anna input, a line containing only the input prompt must follow the Anna 
input to signify its end, just as when entering Anna input interactively. 

Script files may also be opened in a nested manner; that is, a script file may itself open a script file. The 
Analyzer always reads from the most recently opened script file. When the end of a script file is reached, it 
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is automatically closed and the next most recently opened script file is used for input. When there are no 
more script files to be read from, control returns to the user interactively. 

4.5.1 Begin Log File — T 

This command prompts the user for a file name. If the file does not exist, it is created; if it does exist, the 
original file is destroyed. The file becomes the most recently opened log file. 

4.5.2 Close Log File — 'c' 

This takes no input. It closes the most recently opened log file. 

4.5.3 Execute Script File — 's' 

The user is prompted for a script file name. If the file is a readable, legal script file, the Analyzer then begins 
processing commands and input from the file, until the end of file is reached. The file is then closed, and 
control returns to the script file which invoked it, or to the user. 

4.5.4 Assertion File Test — 'a' 

An assertion file has exactly the same format as a script file. The difference is that in an assertion file, the 
answer to all Boolean Query commands is assumed to be TRUE. As an assertion file executes, it monitors the 
returned answers to all query ('q') commands. If the answer to one is anything but TRUE, it immediately 
halts, closes all opened assertion and script files, and returns control to the user, who may then examine the 
state to deduce why the result was not TRUE. 

On Unix systems, assertion files may be given on the command line to automate testing of packages. 
Details are given in Appendix D. 

4.6    Other Commands 

4.6.1    Set Options — 'O' 

Specification analysis is highly computation intensive. This is complicated by the many different ways of 
writing specifications: a method of analysis which is fast and helpful for one kind of specification may be 
slow and less robust for other kinds. As opposed to restricting the Analyzer to supporting only certain kinds 
of specifications, it has been made as general as possible, and provided with options so that a particular 
session may be tuned to the kind of specification being analyzed. 

For instance, if the package specification describes an abstract data type, and requires no internal state, 
it is very much to the user's advantage to set the Trivial States option accordingly. Or, while confidence that 
the computation state is logically consistent is crucial in giving confidence that the specification behaves as 
expected, consistency checking takes a great deal of time. If the user is fairly confident that the specification is 
consistent, he will probably want to check consistency manually and only after certain state transformations 
in which he has less confidence. 

When the Set Options command is invoked, for each option kind the available settings and the current 
setting are printed. Then the user is prompted for a new setting; this is always a single digit, 0-9, and no 
carriage return is required. To keep an option the same, enter a carriage return. 

Each option and its use is described below. 
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Single Value Search If the state being examined is inconsistent, it is possible for an expression to have 
different values in different consistent subsets of the state. Because the alternative values of an expression 
may be useful in determining why a state is inconsistent, the Value Search command may optionally search 
the state for all values of an expression. If this option is set to TRUE, once a value for the expression is 
found, the Analyzer prints it and stops looking. If the state is known to be consistent, then every expression 
must have at most one value (due to the uniqueness property of Ada literals), and this is the best and fastest 
mode. If FALSE, the state is searched for all values in all subsets of the state which are consistent; they are 
printed as they are found. The default is TRUE. 

Semantics When TRUE, this enables static semantic checking of all packages loaded, and of interactive 
Anna input. After setting this option to TRUE, the Initialize command ('i') should be given, and all packages 
should be reloaded. The default is TRUE. 

Depth Limit   The "depth" of an inference is the greatest number of rules used to derive it. For instance, 

if the rules 
for all I  :  Integer  =>  I  >  0  ->  C(I) 
X  =   10 

in the current state are used to derive 
C(X) 

the depth reached was 2. Setting this option to a positive number limits to that number the maximum depth 
explored in trying to prove statements or deduce the value of expressions. When set to 0, no depth limit is 
enforced. The default is No Limit. 

Trivial Package States When TRUE, packages loaded are assumed to have trivial states; that is, all 
states of the package are assumed equal to the Initial state. This simplifies some theorem proving, and 
the representation of the package is also simpler. Usually the time required for queries and value searches 
decreases. If the package contains annotations which cannot hold for a trivial state package, they may be 
detected as a state inconsistency. The default is FALSE. 

State Test If TRUE, the state consistency test command ('t') will be invoked automatically after each 
computation state transformation (i.e., after any State Manipulation command). The default is FALSE. 

Save Corollaries Deducing the result of a query or the value of an expression may be a complex process 
taking a great deal of time. Also, it often happens that a boolean expression whose truth value has been 
deduced is used later in deducing the truth value of another expression. Normally the Analyzer would have 
to prove the original expression all over again. This option allows users to save the results of the Query and 
Value Search commands automatically. The default is FALSE. 

When this option is set to TRUE, and a Query is given which has the result TRUE, the deduced statement 
is added directly to the computation state, so that it may be used directly in future deductions. When a 
Value Search command is given and a value is found, an expression equating the given expression with the 
resulting value is added to the state. For instance: 

> v (Value of expression) 

—>i; 
—> 

23 

After this command is given, the expression 
I  =  23 
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is added to the state if the Save Corollaries option is TRUE. 
This does not cause a state transformation; the computation state number remains the same. This is 

because no new information is being added. Instead, a corollary of the state is being stated explicitly. 

Quantified Expression Query Kind Setting this option automates the method chosen for evaluating 
quantified expressions when using the Boolean Query command. Methods of evaluating quantified expres- 
sions are discussed in Appendix C. The default is None. 

None. For every quantified variable in expressions which are queried, the user is asked interactively for 
the method of evaluation. 

Check Objects Only. All quantified expressions are evaluated using the Check Objects Only method. 
Objects Define Domain. All quantified expressions are evaluated using the Objects Define Domain 

method. 

Verbose If this option is set to TRUE, intermediate steps for several commands are shown. For instance, 
in executing a subprogram with verbosity the testing of each in-axiom and propagation annotation will be 
noted, as will the updating process. The default is FALSE. 

4.6.2 Enter Windowing Mode — 'w' 

When running the Analyzer under X-Windows, a window-oriented user interface is available. It features 
a main window with pull-down menus for entering commands, and "buttons" for setting options. When a 
file containing one or more packages is loaded for analysis, a second window is activated showing the text 
of the file. The appropriate lines of the file are highlighted where, in the line-oriented version, source text 
is displayed. User input is entered in the main window, in the usual format (prompted by "—> ", and 
terminated by an empty input line). 

There are some differences in functionality in the window-oriented version, as follows: 

• There is no "Set Options" command.   Options are set by pressing buttons at the top of the main 
window. 

• The quantified expression query kind is fixed as "Objects Define Domain" (see Appendix C) upon 
entering windowing mode, and can not be reset; there is no corresponding button for this option. 

• Only one file may be analyzed at a time; however, the file may contain multiple packages. 

4.6.3 Help — 'h' or '?' 

Currently, this command prints out the list of single-character commands, along with a one-line description 
of each. 

4.6.4 Quit — 'Q' 

Exits the Analyzer. 
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Chapter 5 

Implicit Knowledge 

5.1 Package Standard 
The Analyzer has some knowledge of the package Standard, defined in [8, §C]. This knowledge is as follows. 

Types Boolean, Integer, Character, Natural, Positive, and String are defined. 
For relational operations, all relations are represented internally as equalities, less-than relations, and 

conjunctions and disjunctions of the two (e.g. a >= b is represented as a = b or b < a). The implicit 
axioms for equality ("=" given in [2, §7.8.2]) are supported. The strict partial order axioms (transitivity 
and irreflexivity) for the less-than relation "<" are supported. 

Logical operations are all defined. All Integer type operations are defined, and will yield the expected 
function results if passed expressions which have a value in the given state. Axioms of the integer operations 
(commutativity, associativity, etc.) are not implicit. Thus while it is easy to prove 

A  +  B  =  B +  A 
when A and B have deducible values, deduction of commutativity in general is not supported. 

No other definitions in package Standard are supported. 

5.2 Frame Axiom 
A computation state is comprised of many entities with values which may be different in different states, 
such as variables and function calls. When specifying a state transformation, it is convenient to describe 
only the changes to the state, and ignore entities in the state whose values are unchanged; intuitively, if a 
state transformation does not refer to a state entity, we may assume that its value has not changed. This 
implicit assumption is known as the Frame Axiom. Since variables and function calls are two fundamentally 
different entities in this model (variables existing in the outer computation state, and indexed by numbers; 
function call values existing in a particular package state, and indexed by a list of subprogram calls), two 

different Schemas are needed. 

5.2.1    The Frame Axiom for variables 

Consider a set of Anna expressions which transform the state S(i-l) into S(i), where i is a positive number. 
Associate with this transformation a set Used(i), which is the set of variables that are assumed to have been 
changed in value by the ith transformation. Then we may express the Frame Axiom as an axiom schema 
which applies to each variable declared. This schema is as follows: 

For each variable v, 
(V positive i) if v £ Used(i)  then  v'i = v'(i - 1) 
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The Analyzer builds Used(i) by examining instances of variables in the set of transformation expressions. If 
some instance of a variable is not modified by in (meaning the instance refers to the value of the variable 
after the transformation), it is an element of Used(i). A variable occurring in the transformation which has 
every instance modified by in will not be in Used(i). For example, if the transformation to computation 
state i consists of the single Anna expression: 

— |  X = in Y; 
then X will be the only element of Used(i); so from the schema we can infer that in state i, 

y'(i) = y'(i-i) 
This matches the intuition of most users that the transformation implies that the value of X has changed, 
but not the value of Y. 

5.2.2    The Frame Axiom for function calls 

Now consider a set of Anna expressions which transform the state of a package P from the package state 
P'State to the state P'State[S] by execution of subprogram call S. Associate with this transformation a set 

P_Used(P'State[S]) 
(that is, P.Used is a collection of sets indexed by states of P), which contains instances of function calls. 
Then we may express the Frame Axiom as an axiom schema for each legal function call F(x\,.. . ,x„) for 
each n-ary function F, and each expression x,- (note that r,- is not a value but an Ada expression) in package 
P. This schema is: 

For each n — ary function F in P, 
(Vxi,..., iB)    if f(*i ,...,*»)£ P-Used(P'State[S]) 

then P'State[S].F(xi,...,xn) = P'State.F(in(xx),..., in{xn))) 

The meaning of in(xj) is analogous to its meaning in Anna: if expression i,- contains a variable, use the value 
of the variable in the previous computation state; if x,- contains another call to a subprogram of package P 
relative to P'State[S], use the value of the function in state P'State with in applied to its actual parameters. 

P.Used is built only when the state of some package changes; this can occur only when performing the 
Execute Subprograms command. P.Used is built in a manner similar to the Used set. When executing a 
subprogram symbolically, the computation state transformation may contain calls to functions declared in 
the same package as the subprogram begin executed (we assume calls to other packages do not change the 
states of those packages). For each such call, if it is in an out- or result-annotation and is not modified by 
in, the call is an element of P.Used. As with variables, we may think of this intuitively as follows: if the 
user makes an assertion about the value of a package function in the out-state of a subprogram execution, 
the user probably means to imply that its value has changed by executing the subprogram. 

For example, if in a package Direct.IO we have a subprogram such as: 
procedure Write(   F   :   File; 

P   :   Position; 
D   :   Data  ); 

— -1  where 
— I Is_Open(F), 
— j out(  Data_At(F,P)   =  D  ); 

and we execute this subprogram in the initial state with the following call: 
Write(  Fl,  3,  Dl  ); 

then the function call Data_At(Fl,3) will be a member of the set 
Direct_IO_Used(Direct_IO'Initial[Write(Fl,3,Dl)]) 

whereas the other function call referred to in the subprogram annotations, Is.Open(Fl), will not be a member 
of that set since it did not occur in an out annotation. Therefore, for example, the frame axiom will apply 
to the Is_Open call; the following statement will hold: 

Direct_IO'Initial[Write(Fl,3,Dl)].Is_Open(Fl)  =  Direct_IO'Initial.Is_Open(Fl) 
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In fact, it would apply to every legal function call in the package except the call Data_At(Fl,3). 
A function call is also in P.Used if it is used in an axiom or result annotation relative to a state matching 

the subprogram execution. If a package contains the axiom 
— |  axiom for all  R :  Resource  => 
— | not  Resources'State[Allocate(R)].Resource_Available(R); 

This axiom expresses that the value of Resource-Available for a particular resource will be FALSE 
immediately after an Allocate of that resource. The sets Resources-Used are indexed by a package state; 
for every state whose last call was an Allocate of some resource R, its associated Used set will contain 
Resource_Available(R). Examples of sets containing Resource.Available(Mag.Tape) are: 

Resources_Used(Resources'Initial[Allocate(Mag_Tape)]) 
Resources_Used(Resources'Initial[Allocate(Printerl);Allocate(Printer2);Allocate(Mag_Tape)]) 
Resources_Used(Resources'Initial[... ;Deallocate(Mag_Tape);Allocate(Mag_Tape)]) 

and so on.    This corresponds to the user's intuition that the axiom above "forces"  the value of Re- 
source-Available to be FALSE in all applicable situations. 

Finally, if a function has a result annotation, all possible calls to the function will be elements of all 
P.Used sets; by writing a result annotation, the user is implying that the value of a function is reflected in 
the result annotation no matter what state of the package the function is called relative to. If the following 
declaration is given in a package Lists: 

function Member(  E  :   Elem;  L   :   List  )  return  Boolean; 
--|  where return for all L2  :   List  => 
— | if L = Insert(E,L2)  then TRUE 
— j else Member(E,L2) end if; 

the user is making an assertion about the value of Member in every state of package Lists, so every possible 
function call to Member is an element of all sets in the collection Lists.Used. 
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Appendix A 

Sample Scenario 

What follows is a simple scenario using the Analyzer on a small Set package. The annotated package itself 
is shown in Figure A.l. Note that we are analyzing the generic package itself, and not an instantiation of 
it (see Appendix B.1.12); briefly, the type Elem is treated as a private type, in the same way as type Set is. 
Also, while an implementation is given for the private type Set, the private part of a package is ignored by 
the Analyzer. Declarations in the private part are included only to insure Ada semantic correctness of the 

unit. 

generic 
type  Elem is  private; 

package  Sets  is 
type Set  is  private; 

function Empty return Set; 
function Insert(  E   :  Elem;     S   :  Set  )  return  Set; 

function Cardinality( S  :  Set  )  return Natural; 
function Member(   E   :  Elem;  S   :  Set  )  return Boolean; 

— |  axiom  Cardinality(Empty) =  0; 

— |  axiom for all  E  :   Elem  =>  not  Member(  E,  Empty  ); 

— -1 axiom 
— | for all S  :  Set;   E  :  Elem  => 
— | Cardinality(Insert(E,S))  =  Cardinality(S)  +   1, 
— | Member(  E,  Insert(E.S)   ); 

private 
type Set  is  ... ; 

end  Sets; 

Figure A.l: The Set Package 

This package is an example of using Anna to specify an abstract data type—namely, a set—and standard 
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operations performed on the type. Two of the functions, Empty and Insert, operate as generators of the Set 
type and the other two, Cardinality and Member, operate as observers. Package axioms relate the semantics 
of the generator and observer functions. 

One methodology for debugging this kind of package using Specification Analysis is to build different 
values of the abstract type (Set) using the generator functions and to store them in interactively declared 
variables. Then the user examines the values of observer functions on the interactive variables; the value an 
observer has is deduced from the axioms using theorem proving techniques internal to the Analyzer. If the 
observer values are not consistent with what the user expected, he tries to isolate where the difference arose 
by focusing on the annotations relevant to the observer function. 

This methodology is applied in detail below. A trace of a debugging session (boxed) is interspersed below 
with commentary. In the trace itself, user input is shown in boldface, and Analyzer output in Roman. 

First, we will want to save this session for further reference, so we open a new log file "set_session." It 
is clearly the intention of the user that the functions of this package are "pure;" no data internal to the 
package body is needed to support the functions. The Analyzer has an option (see Appendix 4.6.1) which 
may be set so that the package is assumed to have only pure functions and no internal state; it is called the 
Trivial State option. So the Trivial State option is first set to TRUE; no other options are changed. Then 
the computation state is initialized using the 'i' command, and the package is loaded; assume the package 
given in Figure A.l resides in the file "set.anna". 

> 1 (Begin log file) 
Enter File Name: 
--> set_session 

> O (Set options) 
Type <cr> to keep an option the same. 
Single Value Search (0=False(AH values), l=True(Single value))[True] 
--> 
Semantics (0=False, l=True)[False] 
—> 
Depth Limit (0=No Limit)[No Limit] 
—> 
Trivial Package States (0=False, l=True)[False] 
--> 1 
State Check (0=False, l=True)[False] 
—> 
Save Corollaries (0=False, l=True)[False] 

—> 
Quantifier Query Method [Interactive] 
—> 
Verbose (0=False, l=True)[False] 
—> 

> i (Initialize computational state) 

> p (Load package specifications) 
Enter File Name: 
--> set 

Next some useful variables are declared.  SI is a set which is initially empty. El and E2 are elements; 
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since Elem is private and they are not given initial values, they are both considered equal to the Anna 
expression Elem'Initial. Once we have declared them, it is useful to transform the state such that El and E2 
are arbitrarily valued, but definitely not equal to each other; then statements we prove about them will be 
TRUE for any two distinct Elem values. So the state is updated with an expression which implies exactly 
that situation. Finally the values of the observers with respect to SI are examined, to see if they have the 

expected values.   

> o (Declare objects) 
Enter Code (<CR> to end): 
—> SI : Set := Empty; 
—> El, E2 : Elem; 
—> 

> S (Update state) 
Enter Code (<CR> to end): 
—> El /= E2; 
—> 

> v (Value of expression) 
Enter Code (<CR> to end): 
--> Cardinality(Sl), Member(El,Sl); 
—> 
0 

FALSE 

The observers do indeed have the expected values. Now it is up to the user to generate more complex 
values of the type and examine their observer values. For instance, suppose we suspect that the package may 
not specify as the user intended multiple insertions of the same element into a given set. Then an execution 
sequence is given which inserts element El into SI twice, and again observer values are checked.  

> x (Execute subprograms) 
Enter Code (<CR> to end): 
—> SI := Insert(El,Sl); 
—> SI := Insert(El,Sl); 
—> 

> v (Value of expression) 
Enter Code (<CR> to end): 
--> Cardinality(Sl), Member(El,Sl); 
—> 
2 

TRUE 

While the value for the Member call is the expected one, most users would agree that set cardinality 
should ignore multiple insertions of the same element, and the cardinality of SI should be 1. In fact, a 
"correct" implementation of Cardinality (one which returned 1) would violate the given Cardinality axioms. 
Hence the annotations of the package do not express the intended semantics of Cardinality. To see where 
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the problem lies, we examine those annotations which determine the value of Cardinality; two axioms do so: 

— | axiom Cardinality(Empty) =  0; 
— | axiom 
— | for all S  : Set;  E  :  Elem => 
— I Cardinality(Insert(E,S)) =  Cardinality(S) +  1; 

We saw when variable SI was initialized that the first axiom implied the correct value for Cardinality 
of an empty set, and so the problem must lie in the second axiom. A correct version of this axiom which 
handles repeated insertions is given below. 

--|  axiom 
— | for all  S   :  Set;  E   :  Elem => 
— j Cardinality(Insert(E,S))  =  if Member(E,S)  then  Cardinality(S) 
— j else Cardinality(S) +  1  end if; 

We can continue to examine the validity of the Member function in this session. The element E2 is 
inserted into the existing set, and Member is tested for both elements. 

> x (Execute subprograms) 
Enter Code (<CR> to end): 
--> SI := Insert(E2,Sl); 
—> 

> v (Value of expression) 
Enter Code (<CR> to end): 
--> Member(E2,Sl), Member(El,Sl); 
TRUE 

Unable to deduce a value for this expression. 

We expected E2 to be a member of the set, and this turned out to be the case. However, we also expected 
El still to be a member, but this is not provable. Somehow the membership of El has been "forgotten." 
Again we narrow down our search to the applicable annotations: 

— |  axiom for all  E   :  Elem =>   not   Member(  E,   Empty ); 
— -1  axiom 
— | for all  S   :  Set;   E   :  Elem  =>  Member(  E,  Insert(E,S)   ); 

In the same way as before, we see that the second axiom does not reflect the intended semantics of 
Member; it implies membership only for the element most recently inserted. Unlike the previous problem, a 
correct implementation would not violate this axiom. It is simply not complete enough, providing too little 
information to deduce membership of all inserted elements. A more complete axiom is given below. 

— -1  axiom 
— j for all  S  :  Set;  E1.E2   :  Elem  => 
--j Member(  El,  Insert(E2,S)   )   <->   El   =   E2  or  Member(El,S); 

At this point we wish to end the session and rewrite the package with corrected axioms. The log file is 
closed. 

> c (Close log file) 
Closed set_session 

Once the changes are made, we start a new session using the log file as a script file; this will give all the 
commands of the previous session exactly as we gave them. The observers should now exhibit the expected 
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values. 

> s (Execute script file) 
Enter File Name: 
—> set_session 

After this experiment, we may want to try other generated Set values and examine the observers, until 
we are satisfied that the annotations express the intended semantics of sets. 
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Appendix B 

Description of the Supported Subset 
and Limitations 

B.l    The Supported Subset 

B.l.l    Introduction 

What follows describes the subset of Ada and Anna that is supported in the current Analyzer. The description 
has been organized in sections which follow the chapters of the Ada/Anna manuals [8, 2]. 

When the Ada/Anna Semantic Checker is used to insure static semantic correctness of all input (see 
Section 4.6.1), some features of the Analyzer are not supported. These are noted where applicable in this 
document. Otherwise, the Analyzer assumes that all input, both files and interactive, is semantically legal. 

Where the semantic checking option is not used, some minimal checking is still performed. Error messages 
are given when certain obvious semantic errors are detected (asking to execute a subprogram that does not 
exist, for example); in addition, uses of object, type and function names are checked to see if the names have 
been defined. Static type checking is not performed when the semantic checking option is not set. 

B.l.2    Lexical Elements 

Supported for discrete types. Pragmas are ignored. 

B.l.3    (Annotations of) Declarations and Types 

Object declarations, named number declarations and object annotations are supported. 
Type declarations, subtype declarations, and subtype annotations are supported for discrete types and 

private types only. 
The DEFINED attribute is supported for objects. The INITIAL attribute is supported for types. 
Subtypes and the BASE attribute are supported for discrete and private types. 
Derived types are supported for discrete and private types. 
All discrete types are supported except where their literals are identifiers or characters which are already 

used as literals, (e.g., Character Enumeration types, or user-defined enumeration types with overloaded 
literals). 

The FIRST and LAST attributes are supported. All discrete type operations are supported except the 
attribute WIDTH. 

Floating point, Fixed point, array, record, and access types, and annotations for these types, are not 
supported. 
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The type String is supported as a special case. String values may be examined with the Value Search 
option, and equality is denned for the type. However, no other string operations are denned. 

B.1.4    Names and Expressions (in Annotations) 

Attributes and literals are supported for discrete types.  Named annotations are allowed, but the name is 

ignored. . . 
All Ada and Anna operators for discrete types are supported (membership, implication operators, logical 

operators, short circuit operators, and relational operators). Ada membership (in) and Anna membership 

(isin) are supported. 
Type conversions and qualified expressions are supported for discrete and private types only. 
Universal-Integer is supported, Universal-Real is not. 
Quantifiers are supported for discrete and private types. Evaluating a quantified expression is accom- 

plished by one of three methods, which are described in Appendix C. 
Conditional expressions and modifiers are supported. Definedness of expressions is not supported, except 

for objects and function calls. For definedness of a function call, currently the in-annotations and strong 
propagation annotations are not tested; that is, a function call is considered defined if its actual parameters 
satisfy the Ada and Anna type constraints of the formals, even if an in-annotation is violated. All other 
expressions are assumed to be defined. 

B.1.5    Statements 
The only statements that may be executed in Specification Analysis are subprogram executions and as- 
signments of function calls to variables; they are supported. Using the semantic checking option, only 
semantically legal subprogram calls are allowed. Without this option, the user may also enter simply a 
function call, not assigned to any object (as described in Section 4.4.3). 

B.1.6    (Annotation of) Subprograms 

All formal parameter modes are supported. For subprogram calls, default and named actual parameters are 

supported. 
All subprogram annotations are supported (in, out, result, propagation annotations and object con- 

straints). 
Overloading of subprograms and operators is not supported. 
Subprogram attribute NEW-STATE is supported. OUT is not supported. 

B.1.7    (Annotation of) Packages 

Package specifications with no nested packages or generic instantiations are supported. 
Private and limited private types without discriminant parts are supported. Deferred constant declara- 

tions are supported. 
The private part of a package is ignored. 
The private type attributes, BASE, SIZE, CONSTRAINED, and ADDRESS are not implemented. ^ 
Because overloading is not supported, neither is redefining "=" for limited types. The operation "=", 

when used with limited types, is the default defined by Anna; it obeys the standard axioms of equality. 
Successor package states, relative function calls, and annotations on state types are supported. 
Axiomatic annotations are supported. The implicit axioms of equality (reflexivity, symmetry, transitivity, 

substitution, and independence) are supported. 
Package consistency can be checked manually or automatically every time the package state changes, and 

reports if an inconsistency has occurred. 
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B.1.8    Visibility 

Renaming of declarations is not supported. 
Package Standard is implemented for all declarations involving discrete types except nested package 

ASCII. 

B.1.9    Tasking 

Not applicable. 

B.1.10    Program Structure 

with clauses are allowed, but are ignored; semantic correctness of references to external packages is assumed. 
use clauses are not supported. 

B.l.ll    (Annotation of) Exceptions 

Exception declarations are supported. 
The only predefined exceptions which could be raised in a computation during Specification Analysis 

(that is, not as a result of a propagation annotation) are Constraint-Error or Numeric-Error. They are 
supported. 

Propagation annotations are supported. 
Suppressing of checks is not supported. 

B.1.12    (Annotation of) Generic Units 

When the semantic checking option is used, generic packages are not supported. 
When semantic checking is not used, generic packages may be analyzed by themselves, without being 

instantiated. The generic parameters act as though they were declared in the visible part of a non-generic 
package: generic formal types act like private types, generic formal in objects act like constants, generic 
formal in out objects act like specification variables, generic formal subprograms act like normal specification 
subprograms. All generic formals are supported for discrete types. This includes formal discrete and formal 
integer types; but use of attributes FIRST or LAST is not supported for these types. Annotations of generic 
formal parameters are supported; they act like object annotations. 

Instantiation of generic packages is not supported. 

B.1.13    Implementation Dependent Features 
Not applicable. 

B.1.14    Input-Output 

Not applicable. 

B.2    Limitations 

The Analyzer is a young and not-so-robust tool. Its current release is intended as an exercise to see if/how 
people will use it, and what problems they encounter. 

While most of the theory is well-understood, the problems of writing a decent theorem prover must be 
faced. The current prover is slow and imperfect; you may find problems with it. Please let us know. 

32 



One particular theoretical problem arises when using interactively declared variables in a non-trivial state 
package. The frame axioms for variables and functions sometimes interact in strange ways. If you think you 
are running into this problem, contact the Stanford Anna Team. 
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Appendix C 

Methods of Evaluating Quantified 
Expressions 

When invoking the Boolean Query command on an Anna expression containing a subexpression which is 
existentially or universally quantified, the expression is not proved for the entire domain of the quantified 
variable type—this is, in general, a very difficult problem. Instead, the Analyzer uses substitution schemes 
to test the expression using a subset of the type domain of each quantified variable in the expression. 

In each method, a set of Ada literals or objects is associated with each quantified variable. The Analyzer 
then creates a set of expressions without quantifiers, by substituting an appropriate literal or object for the 
quantified variable instances in the expression. There is one expression for each combination of substitutions 
from the domain sets; each expression is queried, and the set of queries yields a set of boolean results. Each 
method interprets the result of the quantified expression in terms of the set of results. 

There are three different substitution methods. They are described below. 

C.l    Discrete Range 

The first method, Discrete Range, can only be used on quantified variables of a discrete type. It prompts the 
user for a range over which to evaluate the expression. The set of substitutions for the quantified variable is 
then the set of literals in the given range. 

• for universal quantifiers, the expression is: 

- TRUE if all queries of the set of substituted expressions are TRUE, 

- FALSE if at least one query is FALSE, and 

- UNKNOWN otherwise; 

• for existential quantifiers, the expression is: 

- TRUE if at least one query is TRUE, 

- FALSE if all queries are FALSE, and 

- UNKNOWN otherwise. 

This method is best used when the extent of the type domain itself is being tested; for instance to test that a 
subtype annotation restricts the domain as expected. Often in such cases, a small subset of boundary cases 
are all that need be tested. 
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For example, suppose we are writing a square root function for natural numbers. To test that it behaves 
as expected, we might query: 

for all N  :  Natural  =>  N  <=  SQRT(N)**2 <=  N+l; 
While in general we would need to show that this query holds for all natural values N, we would probably 

be satisfied by trying a few values, say 0 to 3. Using the Discrete Range method with the range 0..3, this 
would mean that the set of substitution expressions would be: 

0 <= SQRT(0)**2 <= 0+1; 
1 <=  SQRT(1)**2  <=  1+1; 
2 <=  SQRT(2)**2 <=  2+1; 
3 <= SQRT(3)**2 <= 3+1; 

If each expression in this set is provably TRUE; the returned answer is TRUE. If any expression is 
provably FALSE, the returned answer is FALSE. If some are TRUE and some are UNKNOWN, the returned 
answer is UNKNOWN. 

C.2     Check Objects Only 

In the second method, Check Objects Only, the substitution set consists of the names of objects (variables 
and constants) of the quantified variable's type which have been declared so far. 

• for universal quantifiers, the expression is: 

- FALSE if at least one query is FALSE, and 

- UNKNOWN otherwise; 

• for existential quantifiers, the expression is: 

- TRUE if at least one query is TRUE, and 

- UNKNOWN otherwise. 

This method assumes that there are values in the type domain which are not represented by any existing 
object—most likely the case for complex types. This is a conservative approach the main function of which 
is to search for counterexamples based on the known values of the type. 

For example, suppose we want to test the Singleton function of a Set package. So far, we have interactively 
declared three Set type objects: Si, S2, S2. To prove the expression: 

for all S   :  Set  =>  Singleton(S)   ->   Cardinality(S)  =   1; 
this method would prove the set of expressions: 

Singleton(Sl)  ->   Cardinality(Sl)  =   1; 
Singleton(S2)  ->   Cardinality(S2)  =   1; 
Singleton(S3)  ->   Cardinality(S3)  =   1; 

Suppose one of these expressions were provably FALSE. Then the original expression is FALSE—we have 
found a counterexample. Suppose all the expressions were provably TRUE. Then the answer is UNKNOWN, 
since we still cannot prove the expression holds for every value in the Set domain. 

C.3    Objects Define Domain 

In the last method, Objects Define Domain, the substitution set also consists of the names of objects of the 
quantified variable's type which have been declared so far. The difference is how the results of the set of 
queries is interpreted: 

• for universal quantifiers, the expression is: 
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- TRUE if all queries are TRUE, 

- FALSE if any query is FALSE, and 

- UNKNOWN otherwise; 

• for existential quantifiers, the expression is: 

- TRUE if at least one query is TRUE, 

- FALSE if all queries are FALSE, and 

- UNKNOWN otherwise. 

This method assumes that the entire domain is represented by values of all objects that have been declared. 
That does not necessarily need to be an accurate view; rather, it can simply show how the type reacts "so 
far." Both Check Objects Only and Objects Define Domain are most useful for private types, where no 
domain is explicitly determinable. 

For example, returning to the example for Check Objects Only, suppose one of the expressions is provably 
FALSE. Then the original expression is still FALSE. Suppose that all of the expressions are TRUE. Then 
the original expression is now provably TRUE; as far as we know, the original expression holds for the entire 
domain. 
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Appendix D 

Invoking the Analyzer From Unix 

If the Analyzer and the rest of the Anna tools have been correctly installed (see [7] for details), the Analyzer 
is invoked on Unix systems with the command: 

/usr/anna/bin/span ([option]*  Dfile.name]*)* 

That is, the name of the Analyzer executable file is followed by any combination of command-line options 
(preceded by a dash character '-') and file names. Many command-line options in turn set Analyzer options 
described in Section 4.6.1. option can be: 

• -find-first-value — Sets the Value Search option to TRUE. This is the default. 
• -find.alLvalv.es — Sets the Value Search option to FALSE. 
• -semantics — Sets the Semantics option to TRUE. This is the default. 
• -nosemantics — Sets the Semantics option to FALSE. 
• -test-state — Sets the State Test option to TRUE. 
• -noJest-state — Sets the State Test option to FALSE. This is the default. 
• -trivial-state — Sets the Trivial State option to TRUE. This is the default. 
• -noJrivialstate — Sets the Trivial State option to FALSE. 
• -save-corollaries — Sets the Save Corollaries option to TRUE. 
• -no-save-corollaries — Sets the Save Corollaries option to FALSE. This is the default. 
• -method method-kind — Sets the Quantified Expression Query Kind option, method-kind is either 

"none," "check-objects" or "objects.define.domain." "none" is the default. 
• -verbose — Sets Verbose option to TRUE. 
• -no-verbose — Sets Verbose option to FALSE. This is the default. 
• -windowing — The Analyzer will use the X-Windows interface. 
• -assertion-files — File names following this option in the command line are interpreted as assertion 

files; all file names preceding it are interpreted as load files. If this option is not given, all file names 
are interpreted as load files. 
If any assertion files are given, a special form of execution occurs: the load files are loaded, and the 
assertion files are tested in the order given. Any error in the assertion files (loading error, syntax error, 
or non-TRUE assertions) causes the execution to go immediately into normal interactive mode, so that 
the error may be examined. If no errors are found, the Analyzer terminates after the last assertion file 
has been tested. This option can be used to automate testing of packages. 

iile.name is the name of either a load file or an assertion file, as described above for option "-assertion-files." 
A file name has no leading '-'. As with the Load Packages command, the ".anna" extension need not be 
given for load file parameters. 

Under Unix, ctrl-C will cancel any command using deductive proof (Value Search, Boolean Query, 
Consistency Test, or Execute Subprograms). ctrl-C elsewhere in the Analyzer has no effect. 

The file /anna/spec_analyzer/span_ui/READ_ME lists specific information on using the X-Windows 
interface, for example X default options for the Analyzer. 
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